Step-by-Step Guide to How to Use the Parallel Processing Scheme
and Histogram Routines in Cosmos

January 11, 2006

Contents

1 Distributed parallel processing of an event 3
1.1 Making a skeleton 4
1.2 Preparation of the parallel jobs L oL
1.3 Smashing the skeleton 6
1.4 Fleshing skeleton
1.5 Assembling theresults 9
1.6 Multiple parallel processing 10

2 Rescuing a failed parallel job 11

3 Parallel processing with histogram output 12
3.1 Preparation 12
3.2 Making askeleton Lo 12
3.3 Smashing the skeleton L 12
3.4 Fleshing the smashed skeletons, 13
3.5 Assembling 15

3.6 Modifying the .hist data with final .hyb data and getting files for plotting 15

3.6.1 .hist file from other place, . 16
3.7 Plotting graphs L 17
3.71 1D histogram Lo 17
3.7.2 2D histogram 19
3.7.3 3D histograms 19
3.8 Plural events generation at atime o L. 19
Other job control systems than SGE 20
Histogram routines 20
5.1 2D and 3D histograms and summary 25

This guide applies to Cosmos V7.20 or later. The guide is mainly intended to those who are able
to use a kind of PC cluster and want to use distributed parallel processing of an event (except for
the histogram routines)®.

1 Distributed parallel processing of an event

We assume only one event generation by the parallel processing scheme since the event we want to
generate is of very high energy (for the plural event generation, see section3.8. As of January 11,
2006 , with 50 sets of 2 GHz cpu’s, a full M.C of ~ 10'” eV proton primary with minimum kinetic
energy of 500 keV is the practical limit. It needs about 10 days).

The parallel processing scheme applies the skeleton/flesh method. First we make a skeleton. Instead
of fleshing the skeleton directly (as it is the case in usual skeleton/flesh jobs), we smash the skeleton
into a number of sub-skeletons and flesh them by a number of cpu’s and finally assemble fleshed
results to obtain a one event as if it were generated by one cpu. Therefore we need 4 steps:
skeleton-smash-flesh-assemble.

There are two fleshing procedures depending on the following 2 cases:

basic Any combination of the output of individual particle information and that of hybrid AS
information (typically both).

histo Any combination of above two and the output of histograms (typically hybrid AS + His-
tograms).

The routines for the first case is in UserHook/DisPara/FleshBasic and those for the latter is in
UserHook/DisPara/FleshHist.

Parallel processing may typically be applied to primaries over ~ 10'7eV, but we show a step-by-step
guide using a 3 x 10'eV proton primary case so that the user can finish this example within 10
min or so.

In what follows, sentences with blue letters indicate that you can use another value (name etc), but
it would be better to use as it is because it is used as default in later processes, or using another
value or name is almost no meaning.

A line like
$ make
indicates a command prompt and a command you may enter.

'If the user installs a new Cosmos overriding an old Cosmos, it is strongly recommended to remove old User-
Hook/Hist, UserHook/DisPara, UserHook/DisParaRescue beforehand.

1.1 Making a skeleton

We first assume a basic type application. We observe individual particle as well as hybrid AS.

1. Go to UserHook/SkelFlesh

2. Edit paramBasicDemo. Some essential parameters for this job are

ASDepthList = 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
CosZenith = (1.0, 1.0)

DepthList= 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
DestEventNo = 1 1

Freec = F,

Generate = ’em’

Height0fInj = 20000.0,

IntModel =’"dpmjet3"’

Job = ’newskel’

KEminObs = 3.e3

SkeletonFile = ’../DisPara/FleshBasic/Sparam’
Generate2 = ’em/as’
KEminObs2 = 500.e-6
UserHookc = ’../DisPara/FleshBasic/Skeleton’,

> /tmp/skelwork_#’, ’noappend’,
UserHooki = 15, 16, 0 0, 0,
UserHookr = 00, 00,

We observe hybrid AS at 100 to 1000 g/cm? with step 100 g/cm? (ASDepthList). Individual
particles may be observed at the same depth (DepthList).

The number of events to be generated is 1 (DestEventNo). The first collision point is fixed
(Freec=F) to be at the injection height (HeightOfInj: 20km ~ 55 g/cm?). For the skeleton,
we generate electromagnetic particles besides hadrons and muons, but don’t generate hybrid
AS. (Generate="em’). The job must be 'mnewskel’. The observation minimum energy for
skeleton is 3 x 1012eV. (The appropriate value of KEminObs is 1/500~1/1000 of the
primary energy).

For the parallel job, we need a copy of this input parameter file. It is put in ’../Dis-
Para/FleshBasic/Sparam’ (SkeletonFile). In the fleshing job, we generate hybrid AS (Gener-
ate2=’em/as’). individual particles are followed down to 500 keV (KEminObs2). The addi-
tional parameters are UserHookc, UserHooki and UserHookr. The first value of UserHookc
is the file name of the skeleton itself. The second value is the working file (# is replaced by
a process number).

3. Edit 'primary’ to set proton primary of energy 3 x 10'%eV.
4. $ make clean; make -f chookSkel.mk
5. § ./skelPCLinuxIFC < paramBasicDemo

Then the skeleton making job starts and ends with the following messages in a short time.

+++++++++++
1 events are memorized as skeleton
their seeds are also memorized

No of cummulative events = 1 No of events in this run= 1
comp. sampled accepted
1 1 1

1.2 Preparation of the parallel jobs

Before going into the smashing process, we have to prepare the following. To run a number of jobs
on different hosts, currently we can use SGE (Sun Grid Engine) job control system or SSH (secure
shell). The latter ssh would be available any modern unix OS but cannot judge which cpu is at
leisure automatically. Therefore, it is better to use SGE, if it is available. For other job control
systems, we need some modification of the job submitting system. Independent of SGE or SSH,
it is highly recommended that the user can login to another host without using pass word? . The
method of doing so would be found somewhere on the web. The data files we should prepare here
are used both by SGE and SSH. However, for SGE, the files look like a help it can do without.

1. Go to UserHook/DisPara

2. Make a file allHosts in which you must give a number of lines each of which has a number
and host name like

tasimb03
tasimb03
tasimb04
tasimb04

0 N O O,

The number may any 3 digit integer. They must be unique but could be random (not
recommended though). The same host name may appear if the host has two or more cpu’s
(it could appear more than the number of cpu’s but not recommended).

The list must cover all the possible hosts that SGE may submit a job to the host. The number
and host name correspondence is used only SSH job; SGE job uses only number. You can
add the 3rd column like,

tasimb03 1

tasimb03 1

this is comment ; next host cpu is old
tasimb04 0.5

~N H OO

%Your pc cluster system may prohibit login to an individual host. In such a case, the SSH job system cannot be
used. For the SGE jobs, we must refrain from using local disk (/tmp). This will be mentioned later.

1.3

S otk W

8 tasimb04 0.5

If given, it is understood as relative cpu power (larger value has larger cpu power disregarding
how the host is crowded). The value is used at smashing time. Higher power hosts will be
allotted a larger number of skeletons. Since the SGE job cannot specify the execution host,
the value should not be given for the SGE job. The lines with # at first item or blank lines
are neglected.

mkHost.csh in UserHook/DisPara may be modified to create allHosts.

. Make a file Host in which a subset of allHosts is gvien. The number of cpu’s there is the

number of parallel jobs. For SSH job, you must select alive hosts (and idle hosts as much
as possible). For SGE, only the number of cpu’s are important. (The number itself is also
important to identify the files created by the job).

We created Host containing 30 cpu’s like:
17 tasimb10

18 tasim510
21 tasimb12

53 tasimb29

54 tasimb30
55 +tasimb30

Smashing the skeleton

. Go to UserHook/DisPara/Smash

Edit setupenv.sh. All shell scripts relating to the parallel job submit are written in sh (bash).
This is because the SGE job control system is rather incompatible with csh (tcsh).

FLESHDIR=FleshBasic must be given as the future flesh directory.

NCPU=30 is specified as the number of cpu’s to be used.

Others are those with blue letter categories.

$ bash (or sh)

Do this, if your shell is not sh (bash). We must change the shell here. (only at Smash).

$ source ./setupenv.sh

This is to set environmental variables used in the smash process. Besides, this will check the
degeneracy of the numbers in Host file. If it complains, you have to remake the Host.

. $ make clean ; make

. $./smashSkelPCLinuxIFC

(This is PC Linux with Intel fortran case).

This will generae

of cpu’s= 30
output directory is ../FleshBasic/SkelDir/
30 files will be created there as Skeleton001 etc

3 ptcls are observed ones in skeleton

of total ptcls at flesh= 17486
cpu# cpuPW Sum E # of ptcls
1 1.0 99615.94 583
2 1.0 99615.94 583
3 1.0 99615.94 583
28 1.0 99615.94 583
29 1.0 99615.94 583
30 1.0 99615.94 582

all events have been smashed

Since we didn’t give cpu power, it is assumed to be equal (=1, cpuPW). The “sum E” means
the sum of particle energy and the “# of ptcls” the number of particles in the skeleton given
to each cpu. We see they are almost the same so that the fleshing jobs will need almost the
same cpu time.

1.4 Fleshing skeleton

1. Go to DisPara/FleshBasic
2. Edit setupenv.sh

3. Fix EXECID to be something to symbolize the job. We put EXECID=p3x15c0s1.0, implying
3 x 10'% eV primary with vertical incidence. The first letter must be an alphabet (restriction
by SGE). It must be such one that can be a part of a file name and within 32 characters.
(Absolute path name of a file must be within 128 characters in the parallel job scheme).

4. OUTDIR=/tmp/$USER. This is the directory in which the main output from the job is stored.
Since we suppose a lot of output for individual particle information (more than 50 kbyte/s
from each cpu), writing the output to $TOPDIR/Assemble/0OutDir (best place for later han-
dling) might be overburden to the NF'S so that we choose a local disk (/tmp). (Although this
depends on the environment, if the NF'S usage is very heavy, the job could spend a real time
100 times more than properly needed !)3.

If you have something important not to be deleted in /tmp/$USER you should choose deeper
directory such as /tmp/$USER/Basic. The directory will be created in the next step, if they
are not present.

5. $./setupenv.sh

3As mentioned earlier, your system may not permit using local disk or may not permit to login to a local host. If
login by ssh is not permitted, you will have difficulty to gather data created in the local disk. Such a system generally
supports high performance NFS, so you may use $TOPDIR/Assemble/OutDir.

This is to test your setting and delete files stored in a kind of working directories. Since we
specified /tmp/$USER we are notified to delete files there? . If you are sure the directory exists
in all hosts and nothing remains there, you may bypass the delete process. If the directory is
non existent, you must also try the delete process; it will create the directory. All others are
blue category.

6. Edit chookFlesh.f

In this example, we want output individual particle information at 600 g/cm? which is the
6th depth; we modify the program to write data for aTrack.where = 6.

7. $ make clean; make

8. § ../execflesh.sh sge

Since we want to use SGE, the argument should be sge. If it is ssh, SSH job submitting will
be used. You will see the next interactive mesages.

Assume the file specified by SkeletonFile at Skeleton making time is
./Sparam

Enter y if it is so.
v

/home/Users/kasahara/Cosmos/UserHook/DisPara/FleshBasic

parameter files have been created in /home/Users/kasahara/Cosmos/UserHook/ DisPara/Fles
1) Do you flesh all skeletons by 30 cpus listed in ../Host

2) Or specify some numbers among them for flesh job 7

3) Or stop here

%nter 1, 2 or 3

You selected 1; Enter y, if it is correct

y
command used for cpu 017 is

COSMOSTOP="/Cosmos

NUMB=017

export NUMB

source $COSMOSTOP/Scrpt/setarch.sh

./flesh$ARCH < $PARAMDIR/param017

your job 1841 ("p3x15cosl1.0-017.sh") has been submitted

The red letter is your input. This will submit 30 sge jobs. The NUMB (= number listed
in Host) is important to identify job result. If you find some host becomes down after the
submission and re-submit the job, we should find this number (not host name). In that case,
select, 2 instead of 1 as shown above. Then, you will be asked to enter a list of such numbers.
If such an accident is found after a long run (say, 10 days), re-submission will need another
10 days. This is a tragedy. To ease such a crisis, DisParaRescue is prepared. This will be
mentioned later.

4The delete process scans all the host listed in allHosts. If there is no target files in a host, you will see warning-like
messages. You have to wait a few second for a dead host. Don’t worry about that

9. Output.

After 10 min or so (if the sge job hosts are not crowded and have ~2 GHz cpu), the sge jobs
will end. In /usr/$USER of an sge job host, you will find files such as
p3x15co0s1.0-1871-tasimb30.017.dat

and

p3x15cos1.0-tasimb530.017 .hyb.

p3x15c0s1.0 is the EXECID, 017 the NUMB, 1871 the sge job number, tasim530 the host
name. .dat file contains individual particle info. .hyb file contains hybrid AS results (of a
given skeleton). The file name must conform the rule that last part is NUMB.extention.

1.5 Assembling the results

It is a simple task to assemble all .dat data; simply concatenate all the files. To assemble the .hyb
AS data, we need some work.

1. Go to DisPara/Assemble
2. Edit setupenvHyb.sh

3. HYBFILEO=./$EXECID.hyb. This is to specify the file to become the final assembled hybrid
data. Another one is also a blue category.

4. § ./assemHyb.sh
This command does "make” and issues the following messages®.
(3USER is kasahara in this case).

Output seems in /tmp/kasahara of each host

You have to gather .hyb data into /tmp/kasahara of this host

Now we are going to gather .hyb files in many hosts to /tmp/kasahara of this host
You have some files in /tmp/kasahara of the current host

1--Delete all files in /tmp/kasahara before gathering files (normal)

2--Delete only some files specifying file extesion(s).

3--Keep all files in /tmp/kasahara and gather the files

4--Files have been already gathered so keep them and proceed

5--Keep all files in /tmp/kasahara and quit

Select number
1
5, tasimb03 is being inspected

Then, all of the .hyb data is gathered in the /tmp/kasahara/ of the current host. The script
will execute a program to combine the .hyb data and generate final result in ./$EXECID.hyb.
5. Assembled result.
The final .hyb data will look like
°If you used OUTDIR=$TOPDIR/Assemble/OutDir, this message will not come out.

ev# d# d Ne(hyb) age d/c m.u Ng Ne Nmu cog
1 1 100 2.047E+02 0.17 0.15 552.9 1.215E+03 3.270E+02 6.600E+01 666.
1 2 200 2.983E+04 0.48 0.30 274.6 1.243E+05 3.392E+04 1.896E+03 666.
1 3 300 2.760E+05 0.70 0.45 193.5 1.211E+06 2.794E+05 4.679E+03 666.
1 4 400 8.609E+05 0.82 0.60 152.7 4.151E+06 8.511E+05 1.049E+04 666.
1 5 500 1.533E+06 0.93 0.75 127.7 8.101E+06 1.520E+06 1.932E+04 666 .
1 6 600 1.918E+06 1.03 0.90 110.0 1.099E+07 1.920E+06 2.612E+04 666.
1 7 700 1.879E+06 1.11 1.05 96.9 1.158E+07 1.905E+06 2.999E+04 666 .
1 8 800 1.521E+06 1.16 1.20 87.2 1.007E+07 1.572E+06 3.156E+04 666.
1 9 900 1.043E+06 1.22 1.35 79.2 T.470E+06 1.114E+06 3.114E+04 666.
1 10 1000 6.330E+05 1.28 1.50 72.6 4.894E+06 6.696E+05 2.971E+04 666 .

The first line is added manually to indicate the item. ev# is the event number, d# the depth
index, d depth in g/cm?, Ne(hyb) the number of electrons by hybird calculation, age the
shower age, d/c the depth/cog, m.u the Moliere unit (m) 2 r.l above the observation depth,
Ng the number of photons (> 500keV), Ne that of electrons, Nmu that of muons, cog the
center of gravity of the Ne(hyb) transition (g/cm?). Ng, Ne and Nmu are those obtained by
the full M.C. This is why we gave DepthList the same value of ASDepthList, although we
output particle information only at 600 g/cm?,

6. Gathering .dat files. For this, you may use a command (assume you are in Assemble)
$../gatherAllInTmp.csh ../allHosts /tmp/$USER somedir .dat
somedir is the directory where you want to store the all files. You have to make it beforehand.
If you are sure that Host or some other file contains all the host names that the sge jobs used,
you may use it instead of allHosts. After this, you may concatenate all the files to a single
one. After confirmation, you may delete individual .dat files.

7. Deleting files in /tmp/$USER. You may use rmAlllnTmp in DisPara/.
$../rmAl1InTmp.csh ../allHosts /tmp/$USER

1.6 Multiple parallel processing

In some case you may want to run plural sets of parallel jobs. That is, you are going to do a
parallel job within a single DisPara directory before finishing everything about the first parallel
job. If you do so, there will be a confusion about environmental variable setting. The simplest
way to do multiple parallel jobs will be copying DisPara and its descendent to a different directory
under UserHook/ (Let’s name it DisPara2).

1. Go to DisPara?2.

2. § ./chgDisPara.csh

You have to remember that in skeleton making, DisPara2 must be specified in the parameter file. It
will be necessary to use a different directory in /tmp/ from that used by the running
job.

10

2 Rescuing a failed parallel job

Suppose a following situation. You have 50 hosts to flesh smashed skeletons; each host need 10
days to complete fleshing. Among them, one or few hosts failed to flesh the skeletons due to, say,
some accidents (power failure, malfunction of network card etc). This happened when the job was
reaching the end. So if you repeat the job on another host, it will take another 10 days while
other hosts will have finished the jobs soon. You need 20 days for final Assembling. If the smashed
skeleton is smashed once more, and if you distribute the job to 10 hosts, you need only 1 day, so
11 days are enough for final assembling. The place to do such a work is UserHook/DisParaRescue.

1. Find a smashed skeleton for which fleshing failed. For example, it may be in
DisPara/FleshBasic/SkelDir/ (or DisPara/FleshHist/SkelDir/) as
Skeleton(025.

2. Copy it to DisParaRescue/FleshBasic/Skeleton.

3. Go to UserHook/DisParaRescue/Smash

4. Smash the skeleton as usual (Le, edit setupenv.sh ...)

5. If you have plural skeletons to be fleshed, merge the skeletons in the following way.

6. Find the directory (say, FleshBasic/SkelDir) as above and list of numbers (say, 1, 23 and 30
if Skeleton001, Skeleton023 and Skeleton030).

7. ./mergSkel.sh dir numberl number? ...

For example
./mergSkel.sh ../../DisPara/FleshBacic/SkelDir 1 23 30

The directory is specified relative to the current directory. This will merge skeletons and put
it in the default place.

8. Smash it as usual.

9. Flesh the skeletons as usual.
10. Assemble the results as usual.
11. Add a NUM part to the final result which is one of failed jobs.
12. Move it to the failed job’s $OUTDIR.

13. If there are NUM’s which are not used in the above process, remove corresponding line in
Host.

14. Assemble all the results in the Assemble directory of failed jobs.

11

3 Parallel processing with histogram output

Note: Histogram routines can be used only with Intel Fortran at present. It is needed to allocate
a storage dynamically within a structure construct. This feature is not supported by, say, Absoft
Fortran 90 yet.

How the histogram routines are organized will be explained later (see section 5). We shall go
without knowing it for a while.

At very high energies, if we output individual particle information, we will need 100 GB or more
disk size. It is normally better to take histograms during the program run without outputting
individual particle information. Therefore, we output only hybrid AS information and histograms
in this demo . (The total number of photons, electrons and muons are also output besides hybrid
AS electron size).

3.1 Preparation

1. Go to UserHook/Hist

2. $ make clean; make

This may be done only once. This is to create k90whist*.o in the library.

3. We need “allHosts” and “Host” in UserHook/DisPara as in basic. We use the same one.

3.2 Making a skeleton
This is almost the same as for basic applications. For the demo, we use the same condition.

1. Go to UserHook/SkelFlesh

2. Edit paramHistDemo

This is nothing but a copy of paramBasicDemo except for “FleshBasic” is changed to “Flesh-
Hist”.

3. $ make clean; make -f chookSkel.mk

W

. $./skelPCLinuxIFC < paramHistDemo

3.3 Smashing the skeleton

1. The difference from the basic case is only to put FLESHDIR=FleshHist in setupenv.sh.
2. $ bash

Don’t forget we must use sh for smashing.

12

3. § source ./setupenv.sh

4. $ make clean;make

5. $./smashSkelPCLinuxIFC

3.4

Then, you will see the following result:

of cpu’s= 30
output directory is ../FleshHist/SkelDir/
30 files will be created there as Skeleton001 etc

408 ptcls are observed ones in skeleton

of total ptcls at flesh= 17436
cpu# cpuPW Sum E # of ptcls
1 1.0 99447 .13 581
2 1.0 99447.13 581
3 1.0 99447 .13 581
4 1.0 99447 .13 582
28 1.0 99447 .13 581
29 1.0 99447 .13 581
30 1.0 99447.13 581

all events have been smashed

These are almost the completely the same as the basic case.

Fleshing the smashed skeletons

. Go to UserHook/DisPara/FleshHist.

. All codes that the user may want to modify are gathered in interface.f. However, most output

would be controlled by setupenv.sh.

. Edit setupenv.sh
. Many will be set as for setupenv.sh in FleshBasic.
. Fix EXECID. Must start with an alphabet and is such that it can be a file name.

. HISTDEP="4 6 7 8 10/’ This is not in FleshBasic. We specify at which depth we tack

histograms by this. In this example, we specified 4,6,7,8, and 10-th depths. (I.e, 400,600,..1000
g/cm?).

INDIVDEP="0/"

This is also new. This specifies the depth at which we output individual particle information.
Since we don’t output such info., simply put '0/’.

13

8.

10.
11.

12.

OUTPUT=tttttttttttff)

This is also new. There is a number of histograms (=12) predefined in the program. If t
is given at n-th position, the corresponding histogram is taken and output. If f, no output.
The n-th one is for:

1 In fact, the first one is not for histogram but to control individual particle output. (Since
INDIVDEP="0/’, t/f is not referred.)

2 Lateral distribution (of 7. e, p. Unless otherwise stated, the same is true below) (lat)

3 Lateral distribution of dE/dz (in GeV/(gm/cm?)) (of e, u and e+u). (dEdxlat)

4 Energy spectrum parameterized by radial distance r. (re).

5 Zenith angle distribution (in cos = z) parameterized by r. (rz).

6 f distribution parameterized by the zenith angle (in cos). f is defined as f = 7 af/ r, where
7 is the 2D position vector and d = (cos p, sin ¢) with ¢ being the azimuthal angle. (zf)

7 f distribution parameterized by r. (rf)

8 f distribution parameterized by e.(ef)

9 t distribution parameterized by r and e. ti is the arrival time (in ns). (ret)
10 ¢ distribution parameterized by r. (rt)

11 z distribution parameterized by r and e. (rez)

12 f distribution parameterized by r and z. (rzf)

13 f distribution parameterized by r and e. (ref)

The last symbol in parentheses is used as a quick reference in graphic display interface (Is is
used as “category”).

. OUTDIR=$TOPDIR/Assemble/QutDir

Since we don’t output individual particle information, the output will be done only at the
end of the program run; its size is small. Therefore we don’t use local disk.

Others are blue letter category.

$./setupenv.sh

If some files remain in a kind of working directory, you will be asked to delete them.
$../execflesh.sh sge

This process is the same in FleshBasic.

Assume the file specified by SkeletonFile at Skeleton making time is
./Sparam
Enter y if it is so.

Yy
/home/Users/kasahara/Cosmos/UserHook/DisPara/FleshHist

parameter files have been created in /home/Users/kasahara/Cosmos/UserHook/DisPara/Flest

1) Do you flesh all skeletons by 30 cpus listed in ../Host
2) Or specify some numbers among them for flesh job 7

3) Or stop here

Enter 1, 2 or 3

1

14

You selected 1; Enter y, if it is correct
Yy

Then, SGE jobs will be successively submitted.

3.5

1.

3.6

Assembling

Go to DisPara/Assemlbe.

In OutDir, you will find a number of .dat, .hyb and. .hist data files. The .dat file is for
individual particle information and has only incident particle information. The .hyb data is
for hybrid AS. and .hist is a binary format histogram data.

. First we assemble .hyb data. Confirm setupenv.sh. Probably you need not modify it.

. $./assemHyb.sh

This will create SEXECID.hyb (=p3x15c01.0.hyb in this demo) in the current directory. This
is the final assembled hybrid data. Since we didn’t use /tmp, everything should have done
smoothly.

Confirm setupenvHist.sh. Probably you need not do anything.

. $./assemHist.sh

This will assemble all .hist data and generate $EXECID.hist (=p3x15cos1.0.hist) in the cur-
rent directory. This is a binary file so you cannot recognize the contents.

. At this point, everything in $OUTDIR (=./OutDir) may be deleted. But, the next fleshing

job will delete them if you don’t oppose.

. This binary .hist file is not yet really the final one. It has some hybrid AS information which

is not based on the finally assembled .hyb data. So we must replace it by the true hybrid
information as in the next step.

Modifying the .hist data with final .hyb data and getting files for plotting

No modification is needed if the .hist data dose not utilize hybrid AS information (You could
organize so in interface.f). In our example, we utilize hybrid AS size, age, etc for the “ID (or key)”.
Note that, even if we don’t modify the .hist, the graph itself is correct. Only keys (in terms of
gnuplot) become inappropriate.

1.

2.

Go to UserHook/Hist

Edit setupManipHistEnv.sh

We shall express an Assembled histogram file as .hist file. This is in default not complete. So
we modify it with .hyb data and obtain complete file which we call .chist file. The binary file

.hist and .chist can be converted into ascii format. We call the .ahist and .achist, respectively.
.achist can be obtained from .hist + .hyb or .chist. From .achist, we can produce a number
of files for plotting. Also from .ahist we can do the same, though the “key” is in default, not
correct. In summary, we have following type of jobs.

key comment becoems wrong.
7) .chist + .hyb ---> .achist (possilble but redundant)

Following type of jobs are supposed.

1) _.hist + .hyb ---> .chist

2) .hist + .hyb ---> .achist

3) .chist ---> .achist

4) .achist ---> plotting files

#

5) .hist --—> .ahist

6) .ahist -——> plotting files: graph itself is corrcect but
#

#

Although, 2-+4 in the above processes is the shortest way to get graphs, it is recommended to
keep the complete binary histogram file (.chist); it containes everything and even it affords
some possibility to get a different ascii output. So we prefer to using 1 + 3 + 4.

. Therefore, we set

Job type
JOBTYPE=" 1 3 4"

. Input files and output files are blue letter category.

. As directory to store files for plotting. we set

PLOTDIR=./$EXECID-Plot
export PLOTDIR

. $./manipHisto.sh
Then, everything is managed by the script.

. Without using script, the user can make plotting files from .ahist (.achist) files.

$ awk -f $COSMOSTOP/Scrpt/splitHisto.awk maindir=dir .ahist-file

whee dir is the diectroy to store the generated files, and .ahist-file the soure ascii histogram
file.

. In a actual job, the final .chist (p3x15cos1.0.chist), .hyb file (p3x15cos1.0.hyb) and files for
plotting (p3x15cosl.0-Plot) are to be kept somewhere.

3.6.1 .hist file from other place

We may use histogram routines in other places than parallel processing scheme. We could
modify setupManipHistEnv.sh for such a case. But it may be also good to remember the basic
treatment. Such histograms would not use .hyb data, so we don’t worry about incomplete
binary .hist; the .hist file is complete from the first.

16

3.7

(a) To convert it to .achist, go to UserHook/Hist.

(b) Fix the HISTFILEO environmental variable to be the source .hist file.

(¢) $ make -f bin2ascii.mk

(d) $./bin2asciiSARCH > xxx.achist® (3ARCH is such as PCLinuxIFC)
)

(e) To get flles for plotting
splitHisto.sh dir xxx.achist
where dir the directory to store the files for plotting.

Plotting graphs

The histogram files are organized to be ready for plotting in the p3x15cosl.0-Plot directory in this
example. The basic data file is a table of histograms showing = vs dN/dz. and some others. The
details will be given in a later section. Such data will be plotted by many softwares; we use gnuplot

here.

3.7.1 1D histogram

. Go to inside of the directory. You see a directory list

dEdxLat ef lat re ret ret2 rez rf rt rz zf
which has been explained in 8 of p.14.

. Go to the “lat” directory where you see a directory list

Electrons Muons Photons
which implies the lateral distribution of electrons, muons and photons are available.

. Go to Electrons. You will see 5 .dat files which contains table; its basic ingredient lists

x dN/dx

1 dN
The second item may sometimes be ——.
N dzx

. Each .dat corresponds to a different depth which you specified by setupenv.sh in 6 of p.13.

. To have a quick view of superposed graphs of lateral distribution at these 5 different depths,

$ gnuplot plog.gp

. You will see a graph and notice the vertical scale is in 72— —— with 7 in Moliere unit. This

N dr
1 dN
means the graph is normalzied as N - 1. Note that, if the particle density is expressed
r

dN 1 dN
by p(r), o p(r)27r. Also, the 2nd item in the data file is N and r? weight is used
r r
only at display.

SUnfortunately, it is not easy to make the input by redirection as ./bin2ascii$ARCH < somebin.hist > xxx.achist.

17

10.

11.

12.

13.
14.
15.

16.

17.

. The keys on the right top show the depth index, depth, age, depth/cog, m.u and cog. This

should be correct one since we did a such work previously.

. With this plot, we cannot do anything except for, say, printing it; no curve fitting, no different

weighted graph, no change of key position.

. To be able to control every detail of the plotting, you have to first invoke gnuplot and load

'plot.gp’ as
$ gnuplot
gnuplot> load "plot.gp"

To do a curve fitting at this point, you may define a function, say,

gnuplot > f(x) = pl * x*x(-p4) * (1.+ x/p2)**(-p3*logl0(x)-p5)
gnuplot > pl=4; p2=0.2; p3=0.6; p4=0.1; pb5=2

gnuplot > fit f(x) "3.dat" via p1l,p2,p4,p5

gnuplot > rep f(x)*x*x

Our target is ”3.dat” data which corresponds to 700 g/cm?. The fitting is tried with fixed
p3 = 0.6 (via p1,p2,p4,p5). Since the fit has been done to non weighted data while the display
has 72 weight, we have to write rep f(x)*x*x to see the fitted result. It is not bad at r < 10.

I some case, fitting in a wide range by a single function may be difficult. It is sometimes a
good idea to divide the fitting region into two.

gnuplot > g(x) = rl * x*x(-r4) * (1.+ x/r2)**(-r3*logl0(x)-r5)
gnuplot > ri1=4; r2=20; r3=0.6; r4=0.1; r5=2

gnuplot > fit [10:100] g(x) "3.dat" via ril,r4,r5

gnuplot > rep g(x)*x*x

gnuplot > load "plot.gp"

gnuplot > rep x<20 7 f(x)*x*x: 1/0

gnuplot > rep x>5 7 g(x)*x*x: 1/0

Different weight representation.

Edit plot.gp

change pw=2.00 to pw=1

change ylabel accordingly (”rdN/Ndr”)
change key position. (set key 1,0.01)

load ”plot.gp”

In this case, rep is not enough.

Thicker lines or dot presentation.

change the last line ”w his” to ”w his lw 2” or "w p”. and load again.

18

18. Unnormalized plot.
Change the last $2 to $3 and ylabel to "rdN/dr”. The key position must also be changed.

19. If you want to use this presentation as default for other similar M.C results, you may rename
the plot.gp file and keep it there. You may overwrite later files here. And use saved “plot.gp”.
var.gp need not be saved; It holds only variable part from data to data.

3.7.2 2D histogram

It should be mentioned that our goal is not to produce so called Lego plot or a like for 2D /3D
histograms. Such an output will be treated elsewhere. Our final output is a 1D distribution for a
given parameter space. Say, energy spectrum at a given lateral distance.

1. Go to “re/Photons” directory. “re” means energy spectrum at different lateral distances.
This directory still has subdirectories:
d400 d600 d700 d800 d1000
implying data at depth 400 to 1000 g/cm?.

2. Go to d600. Then, you will find rl.dat, r3.dat, rb.dat... plot.gp and var.gp. There is no
r2.dat etc; this is because we specified lateral distances with some steps. The binary hist file
contains data corresponding to r2.dat and it can be extracted if necessary.

3. The gnuplot graph can be shown same as in the 1D case. The rightmost part of the key will
tell you the lateral distance.

dn

4. Note that normalization for 2D histograms is such that / * 7 dy = 1 for fixed x but not

dn
/*d:cdydxdy =1

xdy

3.7.3 3D histograms

We will need arrival time distribution at a given lateral distance as a function of energy. Therefore,
we need a 3D histogram as “ret”. The directory organization is rather awful for 3D. For exam-
ple, you have to go to ret/Electrons/d600/r3 to be able to reach plot.gp. The normalization is

dn
/*d:vdydzdz =1 for fixed z and y.

3.8 Plural events generation at a time

So far we have been showing only 1 event generation. It is possible to generate plural events in one
parallel job. Simply give a number greater than 1 at Skeleton making. Smashing, Fleshing and
Assembling can be done without paying attention to the fact we are dealing with plural events.

19

After making .achist file, we have to take a little bit different way from the one event case; we have
to split the events into individual event for plotting.

1. $ splitEvent.sh .achist-file eventl event2

where .achist-file is the path to a .achist file which contains a number of events. event! event2
are the first and last event number to be extracted from the file. If event2 is not given, event1
to the last event are extracted. If event! is not given, all events are the target. The extracted
events are stored in the same directory as the source file. The name of each extracted file will
be composed using the source file. Fo example, if a source file name is a.b.c.achist, output
will be a.b.c-1.achist a.b.c-2.achist,...etc.

2. Apply splitHisto.sh to these individual files.

3. Output of individual particle information in .dat file.

The concatenated final file has events not in a sequential way. You have to collect data of
desired event number: For example, if you want gather event number 3,

awk ’BEGIN{put="no"} \

$1=="i" && $2==ev {put="yes"; print;next} \

$1=="1" && $2!=ev {put:"no";next} \

put=="yes" {print} ’ ev=3 concatenated-file.dat > event3.dat

will give you the comprehensive data.

4 Other job control systems than SGE

If the user uses non SGE job control system, probably the files to be modified are execSGEtem-
plate.sh in FleshBasic and FleshHist. In DisPara, there are 3 files: execflesh.sh execflesh_one.sh
and execflesh_all.sh. They have a branch instruction depending on user input ssh/sge. This part
must be also modified.

5 Histogram routines

Note: Histogram routines can be used only with Intel Fortran at present. It is needed to allocate
a storage dynamically within a structure construct. This feature is not supported by, say, Absoft
Fortran 90 yet. Therefore, they are not included in the library. To include them into the library
(for Intel Fortran),

1. Be sure your site.config is for Intel Fortran.

2. In UserHook/Hist
$ make clean; make

This should have been done already in the earlier section.

20

The routines can be used any applications. The routines support up to 3D histograms. The 1D
histogram is obvious. For example, we can make an arrival time (7") distribution, disregarding all
other constraints. We may wan to see the same distribution as a function of lateral distance (R).
For this we may digitize R and T' and accumulate the frequency of the digital bins. This is a 2D
histogram. We can regards it as a distribution of R as a function of T, too. The variables may be
expressed, in general, by (X), (X,Y) or (X,Y, Z) depending on 1D, to 3D histograms.

If we choose , some particular X and Y for 2D, the plotting routine for such a histogram understands
our main purpose is to see the distribution of Y as a function of X. Thus, if we want too see T'
distributions at various R’s, we should choose R as X and T as Y. That is, R is regarded as a
parameter7.

The same rule applies to the 3D histograms. If we want to get T distributions at different R’s as
a function of energy (F), we should organize as (R, F,T). R and E are regarded as parameters.

Our output files for plotting are organized to be fitted directly to gnuplot, but the table data itself
would be used any plotting applications (without any modification, or adding 1- or 2-line headers).

Test programs are supplied in UserHook/Hist as testl.f, test2.f and test3.f to see how 1D to 3D
applications are written. The header files (Z90hist*.h) are here, not in Cosmos/cosmos so you must
show the relative path to the files in your application.

1. Let’s have a look at testl.f.

We generate power spectrum of 3 different indexes and see the spectrum (3 histograms by
k(3)). Besides, we also generate Gaussian distributions with two different averages, each of
which has 5 different variances (10 histograms by h(2,5)).

2. Except for small applications, we shall use binary output.
The output file must be opened by the user with form="unformatted’ option.

We first use

call kwhistso(2)

to declare that our output should be binary. (If the argument is 1, ascii output is obtained).
This call is needed for any 1D, 2D, or 3D applications.

3. To initialize histograms,
call kwhisti(k(i), 1.5, 0.1, 30, b’01111°)
(or generally call kwhisti(area, min, bin, nbin, bitpattern)
is used. Here i runs from 1 to 3 so that we define 3 histograms. 1.5 is the minimum of the
variable. 0.1 is the bin. 30 is the number of bins. The LSB of b’011111’ specifies if we take
log 10 or not. The bit 1 indicates we take log. Even for the log case, the minimum value is

not in log. The bin is for how we divide 1 log scale. (0.1 means 1 log decade is divided into
10).

4. The histogram area must be cleared.
call kwhistc(k(i))

"The output for other purposes, say, lego plot, can be made from 2D histogram. But we don’t touch it here.

21

10.

11.

Table 1: Bit pattern for the histogram initialization
Bit position | Meaning
1] 11111 |If 1, log10 is taken
2| 11111 | If 0, given min is the min value of the lowest bin
If 1, given min is the middle value of the lowest bin
3| 11111 | If 0, underflow is neglected
If 1, underflow is included in the lowest bin
4| 11111 | If 0, over flow is neglected
If 1, over flow is included in the highest bin
5| 11111 | If 0, bin is the really bin
If 1, bin is regared as the max of histogram. bin is deter-
mined automatically

. Generate random variables and count them.

call kwhist(k(i), sngl(x), 1.0)

The variable must be in single precision. The last 1.0 means the weight. Suppose a thin
sampling, then we have particle number not just 1, but 1.3, 2.0 etc. In such a case, we may
use such a value.

. After counting, we perform some statistical calculations.

call kwhists(k(i), 0.)

The 2nd argument 0. means you want to normalize the distribution to be 1. (area normal-

ization). If you give 1.0, or some other positive value, % is normalized by that value.

. Print the histogram. Actually we specified binary output, the file is created in this case.

call kwhistp(k(i), fno)

If we have specified ascii output, and fno<0, the output would be to the “stdout ”. If fno>0,
the disk file is used. (The file must have been opened with formatted option).

. These are minimum of 1D histogram usage.

. kwhists and kwhistp may be called as many times as you want for the same histogram. (Say,

after calling kwhists with 0. you may call it with 1.0)

Other optional call’s.

Next Gaussian case explains more subroutines of which call gives more comprehensive display
of graphs.

To give additional information to the histogram: some of them is used where the files for the
plotting are to be stored, others when the graphs is displayed.

call kwhistai(h(i,j),

* "Test Gaussian dist.",
* "gauss", "event", .false., O.,
IIXH s llmll)

h(i,j) is the histogram area. ”Test Gaussian dist” is the title of the graph. ”gauss” is the
“category” of the graphs. It could be used when we have lots of graphs where the files should

22

12.

13.

14.

15.

16.

17.

be stored. It must be such one that can be a part of the file (directory) name. ”event” is
generally not so important argument; it shows the unit of “dN”. .false. means the vertical
scale should be ordinary scale when displayed (for gnuplot). 0. is the power index to be used
for the graph: aP°“®" is multiplied to the vertical quantity. ”x” is the x—axis label. ”m” is

the unit for the x—axis.

call kvhistid(h(i,j), key)
gives a key: it is displayed on the graph and serves for identifying histograms when multiple
histograms are displayed.

call kwhistdir(h(i,j), dirstr)
This may be a bit difficult to understand. This specifies the directory where the files for
plotting should be stored.

We used a loop

do i= ..
do j = ..
call kwhist..(h(i,j)...)
enddo
enddo

This means we have a lot of graphs. If we don’t use this call, there will be lots of files in the
same directory and we cannot classify which graph is which.

The files for plotting will be organized in the following way

maindir/category/dir(i)/fileJl.dat
maindir/category/dir(i)/fileJ2.dat
maindir/category/dir(i)/fileJ3.dat

where “maindir” is determined later when you create plotting files by the command line.
“category” has been given by kwhistai. In our case "gauss”. dir(i) should be a character
string that the user must give by the kwhistdir call. As indicated by (i), it is a string to
reflect index i. In our case, Gaussian average changes with i. File names fileJ1.dat etc will
be automatically determined inside to reflect index j.

Finally we call kwhists for statistics and kwhistp for printing (in our case, to write binary
file).

The optional routines may be called any place after initialization and before printing call.
Optional calls are mandatory for a lot of graphs; without them no appropriate classification
is possible.

[153}]

If you had no loop correspoinding to “i” in the example, we need not call kwhistdir. The
plotting fillies will be stored in the “category” directory.

Program run.
$ make -f testl.mk
$./test1PCLinuxIFC

23

18.
19.

20.

21.

22.

23.

24.

$ make -f bin2asci.mk

$ setenv HISTFILEO mytestl.chist (this is cshell case)
$./bin2asciiPCLinuxIFC > mytestl.achist

$ splitHisto.sh mytestl mytestl.achist

Go to mytestl, and “gnuplot plot.gp” will show you the the power spectra.

We see the overflow and underflow values are included in the lowest and highest bins. There
is no title, key, etc due to the fact that we used the minimum interface.

Go to gauss. There will be avl and av2 directories.

Go to avl.
$ gnuplot plot.gp
This will show title, key, x, y labels.

However, we cannot control the graphwith this usage. To be able to control the display, we
must load plot.gp within gnuplot.

$ gnuplot

gnuplot> load "plot.gp"

gnuplot> set xr[-2:6]

gnuplot> set log y

gnuplot> rep

gnuplot> a=1;s=1;m=2

gnuplot> f(x) = a/sqrt(2*pi)/s *exp(-((x-m)/s)**2/2)
gnuplot> ! 1s

1.dat 2.dat 3.dat 4.dat 5.dat plot.gp var.gp
gnuplot> fit f(x) "5.dat" via a,s

gnuplot> set yr[l.e-5:10]

gnuplot> rep f(x) 1w 3

More details will be controlled by editing plot.gp. For examle, we change the last part as
call "var.gp" n$1|| u$2n ||W pn

gnuplot> load "plot.gp"
gnuplot> rep f(x) 1w 3

When plot.gp is changed, it is not reflected by rep; we must load it again.

Direct ascii output. For small applications, we may make an ascii .achist file directly. For
example, in testl.f, we may make the following changes

call kwhistso(2) --> call kwhistso(1)
fno= 3 --> fno= -3
open(fno ..) --—> comment out

and then, compile it.

$ test1PCLinuxIFC > testl.achist
will make an ascii file directory. splitHisto.sh will make plotting file as before.

24

5.1 2D and 3D histograms and summary

Test programs for 2D and 3D are test2.f and test3.f. The difference from the 1D case will be
understood by Table 2

Table 2: Summary of interface

function 1D 2D 3D
ascii/bin kwhistso(asciiorbin)
initialize kwhisti(ha, kwhisti2(ha, kwhisti3(ha,
min, bin, nbin, bitptn) min, bin, nbin, bitptn, min, bin, nbin, bitptn,
min, bin, nbin, bitptn) min, bin, nbin, bitptn,
min, bin, nbin, bitptn)
clear kwhistc(ha) kwhistc2(ha) kwhistc3(ha)
count kwhist(ha, x, w) kwhist2(ha, x, y, w) kwhist3(ha, x, y, z, w)
normalize | kwhists(ha, norm) kwhists2(ha, norm) kwhists3(ha, norm)
print /write | kwhistp(ha, fn) kwhistp2(ha, fn) kwhistp3(ha, fn)
Below: optional. needed complex output
add info. kwhistai(ha, title, categ, kwhistai2(ha, title, categ, | kwhistai3(ha, title, categ,
dNunit, logv, pw, dNunit, logv, pw, dNunit, logv, pw,
axis-label, axis-unit) axis-label, axis-unit, axis-label, axis-unit,
axis-label, axis-unit) axis-label, axis-unit,
axis-label, axis-unit)
directory kwhistdir(ha, dir) kwhistdir2(ha, dir) kwhistdir3(ha, dir)
id (key) kwhistid(ha, id) kwhistid2(ha, id) kwhistid3(ha, id)
thinning kwhiststep2(ha, kwhiststep3(ha,
step) step,
step)
event # kwhistev(ha, no) whistev2(ha, no) kwhistev3(ha, no)

We summarize comments to Tables 2 and 3

kwhistso specify output method.
asciiorbin: If 1, ascii output. If 2, binary output

kwhisti make an instance of histogram.

ha: histogram area. include ”Z90histi.h” and type(histogrami) ha (i=1,2,3).

25

min: value of lowest bin. (always not in log)

bin: bin width or highest value of bin. If log, it is for 1 log 10 decade.

nbin: number of bins.

bitptn: 5bit pattern. bit pos 1-log. 2-min is middle of lowest bin. 3-inc. unf. 4-inc. ovf.
5-bin is the highest value of the bin. For 2D (3D), similar ones for Y (and Z).

kwhistc clear histogram area

kwhist digitize variables and count them.
x,(y,(z)): variables.
w: weight. Normally 1.0

kwhists statistical calculation and normalization.
norm: if 0.0, area normalization. if not 0.0, the value is used for normalization.

kwhistp Print a histogram (ascii) or write a histogram into binary file.
ascii or binary is determined by kwhistso.
fn: file number. if ascii output and < 0, “stdout” is used.

kwhistai give additional infromation.
title: string. used as title of the plot.
categ: category of the histogram. short string to symbolize it. say, 'ret’ implying ¢ (arrival
time) distribution at different 'r’ (distance) and ’e’ (Energy). Used to make a directory.
dNunit: short string to show the unit of dV.
logv: if .true., vertical scale is displayed in log.
pw: if non zero, xP" is multiplied to the vertical scale at display time.
axis-label: short string for x,(y,(z)) axis.
axis-unit: short string for unit of x,(y,(z)) axis.

kwhistdir specify directory where plotting files to be stored. dir: string. if white space is included,
eliminated inside. Suppose the following loop structure

doi=1,...
do j=1..
call kwhisti(ha(i,j)...)
enddo
enddo

(For example, i is for different depths, and j for particle type). We will have a lot of plotting
files. So they must be organized in a different directory. When making plotting files, they
will be stored as

For 1D, maindir/categ/dir(i)/file(j).dat

For 2D, maindir/categ/dir(i)/dir(j)/fileXn.dat

For 3D, maindir/categ/dir(i)/dir(j)/dirXn/fileYn.dat

where

maindir: is the directory specified when the command is executed to produce plotting files.
dir(i) is a short string which reflects index i,

dir(j) the same for index j.

fileXn means a file name composed of axis-label. n is for n—th such a file.

26

dirXn is a directory made by a similar fashion.
dir(i) and dir(j) must be supplied by the user. (for 3D case, string corresponding to dir(i) /dir(j)
must be supplied).

If loop j dose not exist, we need not give “dir(i)/”. More loops are not supported.

kwhistid Gives key (in terms of gnuplot).
id: short string to identify the plot. When multiple histograms are plotted on the same graph,
this is used to identify the curve (or dot).

kwhistsetp2 Thinning the plot. (No 1D entry). Suppose a XY 2D histogram. If we plot Y
distribution for all bin of X, we may have too many graphs.
step: if 2, X bin is employed with step 2. For 3D, step for Y can be given. If they are 1,
equivalent to default.

kwhistev Mandatory. when you generate a number of events.
ev: event number.

kwhistd deallocate histogram area.
kwhista add two histograms of the same structure.

kwhistr read binary histogram file. Each histogram has #histN (N=1,2,or 3) depending on 1D,
2D or 3D. The user must read this 1 record and judge the histogram type, and then must
call this.
fn: file number.
con: condition code. if 0, ok.

kwhistw binary write of histogram data. The user need not use this directory, but may use

kwhistp.
Table 3: Other routines for special jobs
function 1D 2D 3D
free array kwhistd(ha) kwhistd2(ha) kwhistd3(ha)
add 2 histo kwhista(hal,ha2,ha) kwhista2(hal,ha2 ha) kwhista3(hal,ha2,ha)
read from file | kwhistr(ha, fn, con) kwhistr2(ha, fn, con) kwhistr2(ha, fn, con)
write to file | kwhistw(ha, fn) kwhistw2(ha, fn) kwhistw3(ha, fn)

27

