
mkLDD

February 19, 2009

1 Bug fix

1. UserHook/Hist: In k90whist1.f, you will find a line

write(fno, ’(a,a)’) ’#k ’, h%c%id(3:klena(h%c%id))
The 3 above is a simple typo and corrected to be 1. The effect so far is not serious.
However, when we analyze a -t.hist histogram, we utilize that line to get the layer
number where histogram was taken.

After correcting, in Hist and mkLDD, do

make clean; make

2. In UserHook/mkLDD. If your interface.f contains

c specify bin or ascii output
call kwhistso(binw)

move them to just before the “return” in the following lines.

return
c *********************************** hook for Beginning of 1 event
c * All system-level initialization for 1 event generation has been
c * eneded at this moment.
c * After this is executed, event generation starts.
c *

entry xBgEvent

and If you find similar “call” in your interface1.f, it may be removed (you may keep
it and remove the one in interface.f. Having both is actually no problem.)

The effect so far: you might have empty “-r.hist” files.

3. In UserHook/mkLDD/Zprivate.f, we see a line

character*128 basefilename, basefilename2, filename

In some environment, 128 may be short. Maybe 192 to 256 is enough.

2 Processing -t.hist file

2.1 splitHisto.sh

You already know this command. It is the quick way to have a look at the histograms.
However, it is not suited to do a systematic work for the histograms.

1

2.2 Step by step examination of the histograms

Before doing a systematic processing of the histograms for later use, we may look at some
of the histograms and examine how the fitting is good or not. Each step is explained in
separate figures. Before doing so, you have to “make”.

• make -f getBasicHistoInfo.mk

• make -f procTime.mk

After making a fitting routine, explained in the next section, you may consult the separate
figures.

2.3 Making a fitting program with CERN minute

The fitting routine (binary executable) is available as
/TAMCDB/F/src/Minuit/Util/timeFit/timeFitPCLinuxIFC

or
/TAMCDB/F/src/Minuit/Util/timeFit/timeFitPCLinuxIFC64

at tasim501/502/599. So if you are lazy, you may use it directory. However, if you want
to do it somewhere other than tasim’s, you have to get the source and compile it yourself.

• You may copy the whole set of Minuite:

cpÃ-rÃ/TAMCDB/F/src/MinuiteÃCosmos/UserHook/

This example makes a copy in UserHook of Cosmos. Although it is not a direct
application of Cosmos, it is treated like the case of Hist routines.

• Before “make”, you have two choices:

– Change COSMOSROOT to COSMOSTOP in Makefile in “Minuite”, “code” and “unix”
directories. Do the same also for timeFit.mk in Util/timeFit.

– Or if you are lazy, you may temporarily
setenv COSMOSROOT $COSMOSTOP

or
export COSMOSROOT=$COSMOSTOP

but you have to remember this fact.

Then, do “make”.

In some environment, you may have to modify the definition of function name in
unix/intrac.c (to capital letter, with or without _ etc)1

• The library of minuit, libminuit.a, will be created in

$COSMOSTOP/lib/$ARCH/

• Go to Util, and

make -f timeFit.mk

This will create a fitting routine timeFit linked to timefit$ARCH.

1This will be found when you make an executable at timeFit; the linker will compline if you need to
modify it.

2

3 Making data for time correction automatically

For a large set of -t.hist files, you cannot do the business outlined above. One single
command,

./procAllLDD.sh
will make *.time files needed to make a correction of arrival times in FDD shower. The
command eventually make a list of coefficients used in a formula

T10 = arb+c log r (1)

in a file with .time extension for each -t.hist. See separate figures. This will take a long
time for, say, 1000 showers. So do it by sge job, or go to cpu idle tasimxxx (you can find
it by qhost command) and issue the command.

3

