
1 Solution for a constant magnetic field

Equation of motion in a magnetic field.

d~r

dt
= c~β (1)

mγ
d~β

dt
= q~β × ~B (2)

We assume ~B and |~β| = β0 are constant in a short time interval. Let make the ~B direction to be the
z-axis ( ~B = (0, 0, B)), and the x axis be directed to ~β × ~B. Hereafter, all the vector components are
assumed to be expressed in the (x, y, z) system unless otherwise stated (see Fig). We get

βz = const = βz0 (3)
dβx

dt
=

qB

mγ
βy (4)

dβy

dt
= − qB

mγ
βx (5)

From the last two, we get

d2βx

dt2
= −ω2βx (6)

d2βy

dt2
= −ω2βy (7)

ω =
|q|B
mγ

(8)

We note that β⊥ =
√

β2
x + β2

y = βy0 = β0 sin θ is constant and βx0 = 0 (suffix 0 means at time t = 0).
Here θ is the constant pitch angle. Then,

βx = ±β⊥ sin(ωt) (9)
βy = β⊥ cos(ωt) (10)

where the sign in the first expression is the same as the sign of q (since βy > 0, it follows that dβx should
have the same sign as q).

Upon itegration, we get

x = ∓cβ⊥
cos(ωt)− 1

ω
(11)

y = cβ⊥
sin(ωt)

ω
(12)

z = cβz0t (13)

where we assumed that the particle is at the origin at time t = 0. The gyroradius is

rG =
cβ⊥
ω

=
mγβc sin θ

qB
= r sin θ (14)

r ≡ p

qB
(15)

where p is the momentum. We may note that if we use singed r without taking the absolute of q, the
sign problem is automatically resolved (± can be dropped, ∓ should read −. So we use the signed r
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hereafter). If a particle travels a distance l in a time t,

l =
∫ √

ẋ2 + ẏ2 + ż2dt (16)

i.e t = l/cβ0 (17)

Then,

ωt =
l

r
(18)

The displacement vector in this time interval is ∆~r = (x, y, z) with

x = −r sin θ(cos(
l

r
)− 1) (19)

y = r sin θ sin(
l

r
) (20)

z = lwz (21)

where wz = wz0 is the z component of the particle direction cosines, ~w = (wx, wy, wz), which is ~β/β0:
That is

~w = (β⊥ sin(ωt), β⊥ cos(ωt), βz0)/β0 (22)

= (sin θ sin(
l

r
), sin θ cos(

l

r
), wz0) (23)

sin θ =
√

w2
x + w2

y (24)

~�
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z
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Y

~R

~w

Then, the prescription for getting the new position and the direction cosines in the original (X, Y, Z)
system is:

• Form the (x, y, z) system by referring to ~B and ~β.

• Comput sin θ from ~β · ~B = β0B cos θ

• Compute r.
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• Compute ∆~r and ~w in the (x, y, z) sytem.

• Convert above two quantities to (X, Y, Z) system (Let them be ∆~R and ~W ).

• The new position is ~R + ∆~R

• The new direction cosines are ~W .

• The only one essential value is

r =
p

qB
=

p

ZeB
=

pc

ZBmec2
c
me

e
=

pc

ZB

2.998× 108

0.511× 10−3 · 1.7588× 1011
= 3.3358

pc

ZB
(25)

where the unit of r is in [m] with pc in [GeV] and B in [T]. For the proton of momentum 1 GeV/c
in a typical ∼ 0.3× 10−4 [T] geomagnetic field, we get r ∼ 105 [m] = 100 [km].

The conversion matrix from (x, y, z) to (X, Y, Z) is



X
Y
Z


 = T




x
y
z


 or




x
y
z


 = T t




X
Y
Z


 (26)

where T t is the transposed matrix of T which is defiend as

T =




TxX TyX TzX

TxY TyY TzY

TxZ TyZ TzZ


 (27)

Tij is the j component of the direction cosines of the i-axis (in the (X, Y, Z) system). Hence,

~Tz = (Bx, By, Bz)/B (28)

~Tx = ~w0 × ~Tz/ sin θ (29)
~Ty = ~Tz × ~Tx (30)

If sin θ is zero or very small, we may take ~Tx = (1, 0, 0), ~Ty = (0, 1, 0). If ~B is slowly changing within the
distance l, some improvement may be possible by using ~B at ~r = l ~w/2.

2 Runge-Kutta method

When ~B cannot be regarded as constant, we have to employ a numerical method for solving the differential
equaitons. For this purpose it is better to rewrite them as follows. We still assume β is constant, and use
` = cβt as the independent variable in stead of t. Then, the basic equations become

d~r

d`
= ~w (31)

d~w

d`
=

q

p
~w × ~B (32)

=
1

3.3358
Z

pc
~w × ~B (33)

where B is in [T] and pc in GeV in the last equation.
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